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Abstract Floating treatment wetlands (FTWs) are efficient at wastewater treatment; however, data
and physical models describing water flow through them remain limited. A two-domain model is proposed
dividing the flow region into an upper part characterizing the flow through suspended vegetation and an
inner part describing the vegetation-free zone. The suspended vegetation domain is represented as a
porous medium characterized by constant permeability thereby allowing Biot's Law to be used to describe
the mean velocity and stress profiles. The flow in the inner part is bounded by asymmetric stresses arising
from interactions with the suspended vegetated (porous) base and solid channel bed. An asymmetric
eddy viscosity model is employed to derive an integral expression for the shear stress and the mean velocity
profiles in this inner layer. The solution features an asymmetric shear stress index that reflects two
different roughness conditions over the vegetation-induced auxiliary bed and the physical channel bed.
A phenomenological model is then presented to explain this index. An expression for the penetration
depth into the porous medium defined by 10% of the maximum shear stress is also derived. The predicted
shear stress profile, local mean velocity profile, and bulk velocity agree with the limited experiments
published in the literature.

1. Introduction
Ponds and wetlands have been used as low-cost and low-maintenance stormwater treatment facilities while
offering esthetic and recreational benefits (de Stefani et al., 2011; Khan et al., 2013; Leiva et al., 2018; Sun
et al., 2009). However, traditional surface flow wetlands with aquatic vegetation growing in sediments are
susceptible to damage because of excessive inundation and rapid transients in water level. Floating treat-
ment wetlands (FTWs) may provide an alternative, especially for stormwater treatment. FTWs are artificial
platforms (or mats) that permit aquatic emergent vegetation to grow in water that may be otherwise too deep
for them. Their roots develop through a floating platform into the water creating a matrix characterized by
a large surface area to volume ratio. This dense matrix traps nutrients and contaminants that then support
microbes responsible for the creation of a biofilm where much of the biodegradation occurs. The microbes
living within the matrix convert nitrite-nitrogen (NO2-N) to nitrogen gas (NH3-N) through nitrate reduc-
tion (Randall et al., 1998; Wells et al., 2017). In addition, plants directly absorb nutrients from the water
column instead of sediments, which then increases the overall absorption efficiency (Headley et al., 2008).
As a result, overall uptake rates of contaminants and nutrients are increased over conventional wetlands.

The description of the transport and contaminant removal mechanisms within FTWs are still far from com-
plete. For example, de Stefani et al. (2011) conducted a series of experiments in natural rives and reported
that the chemical oxygen demand decreased by up to 66% once the FTW covers were implemented. As they
state, such a large chemical oxygen demand sink requires inquiry into both—the physical processes and
chemical/biological transformations occurring in the FTW. Any assessment of contaminant and nutrient
removal by FTWs must begin by describing the simultaneous water transport within and below the mat-root
system. The absence of such a model hinders the utility of FTWs as viable engineering phytoremediation
options. To be clear, developing such a model is by no means sufficient to tackle all the complex biological
and chemical transformation issues occurring in FTW though it may be deemed as a necessary and logical
first step. The study here seeks to begin addressing this knowledge gap by developing a reduced but physi-
cally based model describing the mean velocity and turbulent stress profiles within an idealized FTW. The
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Figure 1. (left) The two-domain system used to approximate the flow through a simplified FTW, where H is the flow
depth and h is the thickness of the flow region beneath the suspended canopy. Surface winds are momentarily ignored
in this initial consideration. (right) The expected shapes of the mean velocity u(z) and shear stress 𝜏(z) profiles are
shown, where x and z represent the streamwise and vertical directions, respectively. The intermediate layer is part of
the suspended canopy domain characterized by a rapid decline in 𝜏(z) with increasing z.

starting point is the suspended canopy model originally proposed by Plew (2010) whose components are
sketched in Figure 1. The suspended canopy is represented by densely packed smooth rigid rods mirroring
the root-porous system anchored to the top of the water surface.

Figure 1 suggests that the flow domain within a canonical FTW system is characterized by two regions
and three layers. The two regions are the dense rigid but floating vegetation and the vegetation-free region
below it. The three layers are as follows: An upper layer where the mean velocity profile is roughly uniform
and the shear stress is small. In this layer, the flow is analogous to those encountered in porous media
where nonlinear or inertial correction to Darcy's law (i.e., Forchheimer effects) may be included. A bottom
vegetation-free layer that resembles a channel flow where the channel bottom experiences conventional
wall friction but the top experiences finite shear stresses, mean velocity, and mean velocity gradients. An
“intermediate” layer must then form at the bottom of the floating vegetation layer where the flow transitions
from channel-like (often turbulent state) to a porous-medium-like. A mathematical model describing the
entire mean velocity and shear stress profiles are to be developed based on the expected physics in this
three-layer representation here. Comparisons with published experiments collected separately for various
layers suggest that the proposed model and representations can reasonably reproduce the essential features
of the mean velocity and shear stress profile shapes in FTWs.

2. Theory
Throughout, the coordinate system is as follows: x represents the longitudinal direction, y represents the
lateral direction, and z represents the vertical direction with z = 0 being the channel bottom. The flow in
the FTW featured in Figure 1 is assumed to be steady and uniform so that the flow depth H is constant. The
FTW is assumed to be sufficiently wide so that any side friction can be ignored relative to other frictional
forces resisting water movement in both domains. The FTW is also assumed to be sloped with a small sloping
angle 𝜃 so that tan(𝜃) = sin(𝜃).

The suspended canopy is composed of uniform rigid cylinders of height h placed at high density defined
by the number of cylinders per unit ground area. The suspended canopy region is further divided into two
dynamically distinct layers. An upper layer that is to be modeled as a porous medium and a lower layer
impacted by the flow in the vegetation-free domain. Hereafter, this vegetation-free layer is simply referred
to as the inner layer. The flow velocity in the canopy layer is expected to be relatively large so that turbulent
shear stresses cannot be entirely ignored. With some modifications, a porous-media assumption for the
upper canopy layer is to be employed based on its success in several obstructed open flow systems including
submerged canopy flows (Battiato & Rubol, 2014; Rubol et al., 2016, 2018; Wang & Huai, 2018.)

Airflow above the FTW in Figure 1 is momentarily ignored so that any air-induced stresses at the air-water
interface is assumed to be negligible or absorbed by the aerial part of the suspended canopy. Moreover, water
density gradients within the FTW are ignored as well.
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Flow in the inner layer (z ∈ [h,H]) is complicated by the fact that the top and bottom are experiencing
different types of frictional resistance. One type is associated with the frictional stress generated by the
canopy (or porous medium) bottom and the other type is a conventional frictional stress generated by the
channel bed that can be either smooth, rough, or transitional. For this reason, a dimensionless stress index
𝜆 is introduced and defined as 𝜆2 = 𝜏v∕𝜏b or as 𝜆 = u*v∕u*b. This stress index is used to assess the degree
of stress asymmetry experienced by the inner layer and its inference is to be explored later on. Here, 𝜏v and
u*v are the shear stress and associated friction velocity at the bottom of the canopy layer, and 𝜏b and u*b are
the shear stress and friction velocity at the channel bed, respectively. Physically, 𝜆 reflects the effects of the
vegetation roughness and river bed roughness on the flow in the inner layer. For example, if 𝜆 ≫ 1, the
canopy roughness is more significant than the channel roughness.

The novelties of the proposed model are in the treatment of the inner layer, its coupling to the floating veg-
etation layer, and the representation of the properties of the floating vegetation layer. The inner layer is
considered integrally thereby avoiding the need to explicitly resolve all its subdomains as previously pro-
posed in similar asymmetric shear flows (Huai et al., 2012). The vegetation layer is further characterized by
an obstruction permeability as suggested elsewhere (Battiato & Rubol, 2014; Lowe et al., 2008), which dif-
fers from prior cylindrical drag force representation involving unknown drag coefficients or patterns and
bending status of cylinders. This approximate treatment of the flow within the vegetation layer (Battiato &
Rubol, 2014; Rubol et al., 2016) allows the use of Biot's Law (Biot, 1956; Hu et al., 2014; Zhao et al., 2012)
to describe the mean velocity. In Biot's derivation, tortuosity characterizes the heterogeneity of the local
velocity that can then be simplified and expressed as a function of the mean local velocity. Furthermore, a
vertical momentum dispersivity component can be linearly introduced and used to capture the stem-scale
turbulence as discussed elsewhere (Zeng & Chen, 2011).

2.1. Governing Equations
The continuity and momentum equations governing the flow in a porous medium (Biot's Law) are given as

𝜕

𝜕t
(n𝜌) +▽ · (n𝜌U) = 0; n𝜌DU

Dt
= n𝜌g +▽ · f − 𝜇n2

kp
U (1)

where t is time, n is the solid skeleton porosity, 𝜌 is the water density, U is the velocity vector, g is the
gravitational acceleration, 𝜇 is the total viscosity, and f is the stress tensor described by Newton's viscosity
law, and kp is the porous medium permeability given by the Kozeny Carman equation only applicable to
laminar flow (Marshall, 1958),

f = n𝜇[▽U + (▽U)T] − npI; kp = 1
CsT3

0 S2
s

n3

(1 − n)2 , (2)

where T indicates the matrix transpose operation, p is the pore pressure, I is the identity matrix, Cs is the pore
shape factor, T0 is the tortuosity, and Ss is the specific surface area. Equation (2) employs a first-order closure
principle for the total shear stress component, that is, 𝜏 = −𝜇du∕dz. For stationary and planar-homogeneous
flow, the combined continuity and momentum equations reduce to

n𝜇 d2u
dz2 − 𝜇n2

kp
u + n𝜌g sin 𝜃 = 0, (3)

where u(z) is the sought mean velocity profile along x and 𝜃 is the slope angle of the wetland bed. It is
to be noted that the assumptions employed here reduce Biot's law to the so-called Brinkman equation
(Brinkman, 1949) used in prior porous media studies (Battiato & Rubol, 2014; Rubol et al., 2016, 2018.) To
apply equation (3) to the FTW flow, the total viscosity term 𝜇 must be amended by adding a momentum
dispersivity component Lzz (Battiato & Rubol, 2014; Fried & Combarnous, 1971) so that 𝜇 = 𝜇v +Lzz with 𝜇v
now being the dynamic viscosity of water (Wang & Chen, 2017; Zeng & Chen, 2011). Equation (3) frames the
governing equation for the FTW, where n = 1 in the vegetation-free zone and n ∈ (0, 1) for the canopy layer.

2.2. Analytical Solution for the Canopy Layer
As earlier noted, wind-induced stresses at the air-water interface are neglected so that the total stress at
z = H can be ignored. Moreover, the mean flow is assumed to be continuous at the bottom of the vegetation
layer. These approximations yield the following boundary conditions to equation (3):
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u(z)|z=h = ui;
du(z)

dz
|z=H = 0, (4)

where ui is the velocity located at the plane z = h, which is to be determined from momentum transport
considerations in the inner layer. This mean velocity continuity condition has been used in prior studies
dealing with an interface between the canopy top and a canopy-free zone as encountered in conventional
canopy turbulence studies (Ghisalberti & Nepf, 2004; Nepf, 2012; Poggi et al., 2009; Yang et al., 2015). More-
over, numerous canopy flow experiments in both terrestrial and aquatic environments as well as flow over
porous beds support a mean velocity continuity condition (Katul et al., 2004; Manes et al., 2011; Poggi,
Porporato et al. 2004; Poggi, Katul & Albertson 2004; Raupach et al., 1996). To explore the general features
of equation (3), three dimensionless parameters are now introduced

𝜉 = z
h

𝜓 = u
uc

Ψ = u
u∗b

, (5)

where a characteristic velocity uc in the canopy layer is defined as

uc =
h2

n(𝜇v + Lzz)
𝜌g sin(𝜃). (6)

The choice of two velocity scales (𝜓,𝛹 ) is to delineate the flow properties in the canopy layer (𝜓) from the
inner layer (𝛹 ) discussed later on. After normalization, the governing equation and boundary conditions are

d2𝜓

d𝜉2 − 𝜙2𝜓 + 1 = 0, (7)

𝜓(𝜉)|𝜉=1 = 𝜓i
d𝜓(𝜉)

d𝜉
|𝜉=H∕h = 0, (8)

where the porous resistivity coefficient 𝜙 is now defined as

𝜙 =

√
n(H − h)2

kp
= Ss(H − h)

( 1
n
− 1

)√
CsT3

0 . (9)

Thus solving equation (7) subject to these two boundary conditions yields the dimensionless mean velocity
profile for the canopy layer 𝜉 ∈ (1,H∕h),

𝜓(𝜉) =
(
𝜓i −

1
𝜙2

)
cosh[𝜙(H∕h − 𝜉)]
cosh[𝜙(H∕h − 1)]

+ 1
𝜙2 , (10)

where the dimensionless interfacial velocity 𝜓 i = 𝜓(1) is to be determined from flow considerations in the
inner or vegetation-free layer. The dimensionless water surface velocity 𝜓 s(H∕h) is given by

𝜓s = (𝜓i − 𝜙−2)cosh[𝜙(H∕h − 1)]−1 + 𝜙−2. (11)

The dimensionless mean velocity profiles in equations (10) and (11) are shown in Figure 2 for varying porous
resistivity in the vegetation zone.

Figure 2 shows that with increasing porous resistivity, the dimensionless velocity profile is reduced and
approaches a Darcy-like flow 𝜓(𝜉) = u(z)∕uc ≈ [(kp∕n)𝜌g sin(𝜃)]∕uc = constant. The normalized turbulent
shear stress (𝛤 (𝜉) = (𝜇v + Lzz)d𝜓∕d𝜉) in the canopy layer, 𝜉 ∈ (1,H∕h), can be determined as,

Γ(𝜉) = 𝜙−1(𝜇 + Lzz)(1 − 𝜓i𝜙
2)

cosh
[
𝜙(H∕h − 1)

]
sinh

[
𝜙 (H∕h − 𝜉)

] . (12)

The dimensionless shear stress profile is also shown in Figure 2. Deep inside the canopy 𝜉 ∈ (1+ 𝛿∕h,H∕h),
the shear stress featured in Figure 2 is much smaller than the penetration height region 𝜉 ∈ (1, 1 + 𝛿∕h).
This is consistent with prior experiments (Ghisalberti, 2009; Nepf & Vivoni, 2000) illustrating that turbulent
mixing mainly occurs around the canopy-water interfacial regions for dense canopies. It also demonstrates
that as 𝜙 increases, the shear stress decreases toward the air-water interface as expected, because the stress
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Figure 2. Analytical results for the canopy layer. (a) The dimensionless mean velocity profile as a function of
dimensionless height 𝜉 = z∕h. The mean velocity is normalized by the interfacial velocity 𝜓(1) = 𝜓 i. (b) The
dimensionless shear stress 𝛤 (𝜉)∕𝛤 (1) profile as a function of dimensionless height, where 𝛤 (1) is the interfacial shear
stress. Note the dependence on porous resistivity coefficient 𝜙 in the canopy layer.

is forced to zero at the interface. In submerged canopy flows, a penetration depth is commonly defined as
the plane at which the shear stress decreases to some 10% (Nepf & Vivoni, 2000; Ghisalberti, 2009) of its
maximum. Consistent with this definition, a similar penetration height (𝛿) for the suspended canopy is now
introduced. The 𝛿 is defined here by the length from the canopy bottom to where the shear stress decreases
up to 10% of the maximum shear stress at the location 𝛤max = 𝛤 (1). Using this definition, the penetration
height can be directly determined from equation (12) as

𝛿 = H − h
[
𝜙−1sinh−1

(
p sinh

(
𝜙

(H
h

− 1
)))

+ 1
]
, (13)

where p = 10% is the stress reduction from its maximum. Equation (13) indicates that the penetration height
is determined from the canopy length and the porous resistivity of the canopy layer. This dependence of 𝛿
on the porous resistivity coefficient 𝜙 is shown in Figure 3.

Larger porous resistivity prohibits some fluid from penetrating into the porous media (i.e., inside the sus-
pended canopy). Hence, as expected from logical considerations, the penetration height must decrease with
increasing 𝜙 as shown in Figure 3.

Figure 3. Dependence of the penetration depth 𝛿 on the porous resistivity coefficient 𝜙 in the canopy layer.
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2.3. Analytical Solution for the Inner Layer
In the inner layer or vegetation free zone, the governing mean momentum equation reduces to a balance
between the gravitational driving force and the total stress gradient (i.e., g sin(𝜃) + d𝜏∕dz = 0) as common
to uniform and steady flow in wide channels. What makes the flow in the inner layer different from con-
ventional open channel flows is the influence of the suspended canopy (Huai et al., 2012; Li et al., 2015).
As noted earlier, the inner layer is subjected to two forms of stresses arising from the canopy medium and
the channel bed, respectively. In wide open channel flows, the turbulent stress at the water surface is zero
so that the total bed stress and water depth dictate the entire stress profile. When the top and bed stresses
are different (and even opposite) as may occur in the presence of another bounding surface (e.g., ice sheets,
water lily leaves), the stress distribution is labeled asymmetric. For such asymmetric stress distribution, prior
studies (Huai et al., 2012) separated this layer into two parts at the location of maximum velocity, which
was assumed to be a free shear-stress surface. The mean velocity profiles were then fitted with two modified
log-laws as if the upper and lower boundaries impose independent canonical turbulent boundary layers.
The resulting mean velocity gradient appears discontinuous at the location of maximum velocity (Han et al.,
2018). Since the interest here is not in all the details of the mean velocity within the inner layer but a link
between the inner and canopy layers, an integral treatment for the inner layer is considered. Integrating the
mean momentum balance equation must lead to a linear stress profile given by 𝜏 = 𝜏b(1−𝜉), where 𝜏b is the
bed shear stress. The link is now achieved by noting that the inner layer is subjected to two bounding shear
stresses (𝜏v and 𝜏b). The only expression that can satisfy these two boundary conditions while maintaining
linearity in the stress profile is

𝜏 = 𝜏b − (𝜏v + 𝜏b)𝜉 = 𝜏b[1 − (1 + 𝜆2)𝜉]. (14)

Equation (14) includes both stresses through 𝜆 =
√
𝜏v∕𝜏b and remains consistent with prior results for

asymmetric shear stress conditions (Guo et al., 2017; Han et al., 2018; Teal et al., 1994). The maximum mean
velocity is expected to occur at the point where the mean velocity gradient is zero or 𝜏 = 0, that is,

𝜉m = 1
1 + 𝜆2 , (15)

where 𝜉m is the point where the mean velocity attains a maximum value in the inner layer. It is evident that
when 𝜆 > 1, 𝜉m < 1∕2, implying that the location of the maximum velocity is closer to the suspended canopy
bottom. Moreover, if 𝜆 = 1, equation (14) reduces to the canonical pipe flow case (symmetric flow), where
the top and bottom shear stresses are equal. For open channel flows, the top shear stress is negligible and
𝜆 = 0 so that 𝜉m = 1 (maximum velocity at the free water surface). Asymmetric flow conditions necessitate
𝜆 ≠ 1. Combining 𝜉m with equation (14), the turbulent shear stress distribution can be expressed as

𝜏 = 𝜏b

(
1 − 𝜉

𝜉m

)
. (16)

Using first-order closure principle (Guo, 2017; Guo et al., 2017; Hultmark et al., 2012, 2013; Katul et al.,
2004; Poggi, Porporato et al. 2004), the turbulent shear stress can be modeled with 𝜏 = 𝜇

′du∕dz, where 𝜇′

is a turbulent dynamic eddy viscosity that must be determined to recover the aforementioned stress profile.
Building on prior work for such asymmetric flows (Guo et al., 2017), an amended eddy viscosity model is
now proposed by introducing a channel permeability coefficient 𝛽1 and is given by

𝜇′ = 𝜅hu∗b
(
𝛽1 − 2𝜉

)
𝛽2𝜉

[
𝛼

(
𝜉

𝜉𝛽
− 1

)2

+ 1

]
, (17)

where 𝜅 = 0.41 is the von Karman constant, 𝛽1 is a coefficient proposed here to reflect the permeability
of the vegetation layer. This coefficient can be determined from continuity and smoothness considerations
of the local velocity at the water-vegetation interface. Theoretically, 𝛽1 can be derived from the velocity
smoothness condition d𝜓(𝜉)∕d𝜉|1+ = d𝜓(𝜉)∕d𝜉|1− as discussed later. It is noted here that when 𝛽1 = 2,
Equation (17) recovers the eddy viscosity model earlier proposed for ice-covered flow (Guo et al., 2017). The
other coefficients are expressed as
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𝛼 = 1 − 𝜆
𝜆 − 𝜆2n 𝛽2 = 1

𝛽1

𝜆 − 𝜆2n

1 − 𝜆2n 𝜉𝛽 =
𝛽1

2(1 + 𝜆n)
, (18)

where n = 5∕6 is derived from considerations discussed elsewhere (Guo et al., 2017). Inserting these coef-
ficients into equation (16), recalling the definition of the normalized mean velocity for the inner layer
(𝛹 = u∕u*b), the normalized mean velocity gradient is now given as

dΨ
d𝜉

= 1
𝜅

[
1

2𝜉
+ 𝜆

2𝜉 − 2
+ 1 + 𝜆

2𝜉𝛽

𝜉∕𝜉𝛽 − 1
(𝜉∕𝜉𝛽 − 1)2 + 1∕𝛼

+ 1
2
(1 − 𝜆n+1)(1 + 𝜆n)
(𝜉∕𝜉𝛽 − 1)2 + 1∕𝛼

]
. (19)

Integrating equation (19) from 𝜉𝛽 to any depth 𝜉 with a pseudo-known condition 𝛹 (𝜉𝛽 ) = 𝛹𝛽 yields the
mean velocity shape given by

𝜅Ψ(𝜉) = 𝜅Ψ𝛽 + ln
(
𝜉

𝜉𝛽

)
+ 𝜆 ln

(
𝛽1 − 2𝜂
𝛽1 − 2𝜆c

)
− 1 + 𝜆

𝛽1
ln

[
1 + 𝛼

(
1 − 𝜉

𝜉𝛽

)2
]

−
(
1 − 𝜆n+1)√𝛼tan−1

[√
𝛼

(
1 − 𝜉

𝜉𝛽

)]
. (20)

Combining equation (15) with equation (20), the maximum normalized mean velocity at the point 𝜉 = 𝜉m
can be evaluated as

𝜅Ψm = 𝜅Ψ𝛽 + ln
(
𝜉m

𝜉𝛽

)
+ 𝜆 ln

(
𝛽1 − 2𝜉m

𝛽1 − 2𝜉𝛽

)
− 1 + 𝜆

𝛽1
ln

[
1 + 𝛼

(
1 −

𝜉m

𝜉𝛽

)2
]

−
(
1 − 𝜆n+1)√𝛼tan−1

[√
𝛼

(
1 − 𝜉

𝜉𝛽

)]
. (21)

Comparing equations (20) and (21), the solution for the asymmetric layer (𝜉 ∈ (0, 1)) is given as

𝜅Ψ(𝜉) = 𝜅Ψm − ln
(
𝜉m

𝜉

)
+ 𝜆 ln

(
𝛽1 − 2𝜉m

𝛽1 − 2𝜉

)
− 1 + 𝜆

𝛽1
ln

⎡⎢⎢⎣
(
𝜉m − 𝜉𝛽

)2 + 𝜉2
𝛽

𝛼
(
𝜉 − 𝜉𝛽

)2 + 𝜉2
𝛽

⎤⎥⎥⎦
−
(
1 − 𝜆n+1)√𝛼tan−1

[ √
𝛼𝜉𝛽

(
𝜉m − 𝜉𝛽

)
𝜉2
𝛽
+ 𝛼

(
𝜉 − 𝜉𝛽

) (
𝜉m − 𝜉𝛽

)] . (22)

The normalized turbulent shear stress (𝛤 (𝜉) = 𝜇d𝛹∕d𝜉) in the inner layer for 𝜉 ∈ (0, 1) is

Γ(𝜉) =
(
𝛽1 − 2𝜉

)
𝛽2𝜉

[
𝛼

(
𝜉

𝜉𝛽
− 1

)2

+ 1

]
Γv(𝜉) (23)

with

Γ∗(𝜉) =
1
𝜅

[
1

2𝜉
+ 𝜆

2𝜉 − 2
+ 1 + 𝜆

2𝜉𝛽

𝜉∕𝜉𝛽 − 1(
𝜉∕𝜉𝛽 − 1

)2 + 1∕𝛼
+ 1

2

(
1 − 𝜆n+1) (1 + 𝜆n)(
𝜉∕𝜉𝛽 − 1

)2 + 1∕𝛼

]
(24)

Substituting equation (12) into equation (23), the expression for 𝛽1 can be derived as

𝛽1 =
(𝜇 + Lzz)(1 − 𝜓i𝜙

2)
𝜙 cosh[𝜙(H∕h − 1)]

sinh[𝜙(H∕h − 1)]
𝛽2[𝛼(1∕𝜉𝛽 − 1)2 + 1]Γ∗(1)

+ 2. (25)

It is to be noted the expression derived here ensures that 𝛽1 ≥ 2. The sought interfacial velocity between
the inner and canopy layers can now be determined at 𝜓 i = 𝜓(1) for 𝜉 = 1 as
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Figure 4. Model results for the inner (vegetation-free) asymmetric layer. (a) The dimensionless mean velocity profile 𝛹
is plotted as a function of dimensionless height 𝜉 = z∕h in the inner layer for various 𝜆 values. Each mean velocity is
normalized by the maximum velocity 𝛹m. (b) The dimensionless shear stress is shown as a function of dimensionless
height 𝜉 = z∕h in the inner layer for various 𝜆 values. Each shear stress is normalized by the bottom shear stress 𝛤 (0).
The (linear) stress profile crosses zero at 𝜉m.

𝜅𝜓i = 𝜅Ψm − ln
(
𝜉m

)
+ 𝜆 ln

(
𝛽1 − 2𝜉m

𝛽1 − 2

)
− 1 + 𝜆

𝛽1
ln

⎡⎢⎢⎣
(
𝜉m − 𝜉𝛽

)2 + 𝜉2
𝛽

𝛼
(
𝜉 − 𝜉𝛽

)2 + 𝜉2
𝛽

⎤⎥⎥⎦
−
(
1 − 𝜆n+1)√𝛼tan−1

[ √
𝛼𝜉𝛽

(
𝜉m − 𝜉𝛽

)
𝜉2
𝛽
− 𝛼𝜉𝛽

(
𝜉m − 𝜉𝛽

)] . (26)

Equation (22) admits a zero shear stress at 𝜉 = 𝜉m as before. Furthermore, the bottom and top roughness
height are not required for the velocity and shear stress determination in the canopy layer, where these
factors are packed into one parameter (=𝜆). To summarize, equations (22) and (10) form a coupled trans-
port model for the FTW. In the canopy or porous media layer, the overall drag is confined to one porous
resistivity coefficient,𝜙. The differing roughness questions are addressed with another asymmetric property
parameter, 𝜆. The influence of 𝜆 on the mean velocity profile is shown in Figures 4.

Figure 4 shows that the mean velocity profile is sensitive to 𝜆. When 𝜆 < 1, the channel bed roughness
is more significant in shaping the mean velocity profile, at least when compared with the canopy top. As
expected, the location of the maximum velocity is closer to the canopy bed. For completeness, Figure 4
also shows the concomitant total stress profile (linear in all cases) up to the point when 𝜏 = 𝜏v (i.e., 𝜉v).
Unsurprisingly, the point at which 𝜏 = 0 and 𝛹 is maximum are colocated at 𝜉m = (1 + 𝜆2)−1.

3. Comparisons With Experiments
The model is now compared with experiments on suspended canopy flow reported by Plew (2010) and
Han et al. (2018). Since Plew (2010) used rigid rods to represent the suspended vegetation, all their seven
reported runs are used in this comparison. Han et al. (2018) employed artificial lotus leaves to represent a
canopy-covered flow, which still generates shear stress asymmetry resembling the inner layer of the FTW
here. The conditions for the data from Plew (2010) (notated with the initial “B” ) and Han et al. (2018)
(represented with the initial “R”) are summarized in Table 1. The experiments do not report 𝜙 and 𝜆, and
they do not provide sufficient details to infer them independent of the model here. Hence, these two variables
were used as fitting parameters in the comparison between model and measurements. All the dimensional
parameters reported in the table and figures are in the international system of units.

The data used include mean velocity and shear stress profiles and bulk mean velocities. Compared with
prior semianalytical models (Huthoff et al., 2007; Konings et al., 2012) and prior analytical work (Battiato &
Rubol, 2014), the present model requires the specification of two parameters (𝜙 and 𝜆). Hence, the “degrees
of freedom” here is commensurate with prior models that require a local drag coefficient and a mixing length
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Table 1
Summary of the Published Experimental Conditions and Relevant Parameters Computed by Us When Fitting the
Proposed Model to the Experiments (𝜙 and 𝜆)

Run H h a g sin(𝜃) U V 𝛿e 𝜙 𝜆 𝛽1

B2 0.2 0.025 1.272 0.001470 0.0876 0.0567 0.0314 1.83 2.01 7.2
B5 0.2 0.050 1.272 0.001170 0.0841 0.0580 0.0342 5.62 2.57 8.5
B9 0.2 0.075 1.272 0.001460 0.0843 0.0566 0.0252 6.85 1.72 3.2
B12 0.2 0.100 1.908 0.001978 0.0876 0.0604 0.0445 5.17 1.75 2.9
B13 0.2 0.100 1.272 0.001528 0.0841 0.0616 0.0410 5.62 2.68 7.3
B14 0.2 0.100 0.954 0.001009 0.0843 0.0658 0.0372 6.18 2.18 5.3
B15 0.2 0.100 0.477 0.000489 0.0855 0.0752 0.0521 4.39 2.23 6.9
R1 0.18 0.18 NA 0.004 0.0938 NA NA NA 0.91 2.0
R2 0.19 0.19 NA 0.005 0.1051 NA NA NA 0.90 2.0

Note.The 𝛽1 presented here is an inferred quantity derived from the smoothness condition at the interface between the
canopy and inner layers. The plausibility of the obtained values is discussed separately. The length scales (H, h, 𝛿e) are
in m, a is in m−1, g is in m/s2, and the velocity scales (U,V) are in m/s.

(Poggi et al., 2009; Huai et al., 2012) or a single fitting parameter that includes both the drag coefficient and
the mixing length scale discussed elsewhere (Battiato & Rubol, 2014).

3.1. Velocity Distribution
The model is now evaluated for the inner and canopy layers. The model parameters in equations (10) and
(22) for each run were determined from the data as follows. For the inner layer, 𝛹m can be directly obtained
from data by using spline interpolation or other smoothing methods as discussed elsewhere (Guo, 2017;
Guo et al., 2017). Next, 𝜆 is fitted to data using a least squares minimization method. After inferring 𝜆, the
interfacial velocity ui or𝜓 i are determined by setting 𝜉 = 1 in equation (22). We also use least squares method
to fit 𝜙 to data using equation (10) inside the canopy as no other information about the properties of the
porous medium are provided. A list of the fitted (and derived) parameters for each run in the experiments
is presented in Table 1.

Figure 5 shows that the proposed two-domain model can describe the mean velocity profile for both—the
canopy and the inner layers when compared to experiments (Plew, 2010). It is noted that the mean velocity
in the inner layer is not logarithmic. This finding demonstrates the “roughness bed” generated by the bottom
of the suspended canopy is significant in shaping the mean velocity profile. In the canopy layer, the mean

Figure 5. Measured and fitted mean velocity profiles for the suspended canopy flow represented by rigid rods. B2 to
B15 are the original data points reported by Plew (2010). The ratio of the canopy height to the flow depth varies from
0.125 to 0.5 as shown in the blue dash-dotted lines.
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Figure 6. Measured and modeled mean velocity profiles for the suspended canopy flow with lotus leaves at the top. R1
(left) and R2 (right) are the original data points reported by Han et al. (2018).

velocity is not uniform along the z direction (as expected from Darcy's equation). The effective porosity
determined here for the suspended canopy is far larger than typical soil porosity, where Biot's Law (Zhao
et al., 2012) was initially proposed. Although the canopy is not strictly a porous medium, Figure 5 shows
that the proposed equation (10) can reproduce the mean velocity profiles inside the canopy layer for a wide
range of flow and canopy conditions.

Figure 6 compares data from Han et al. (2018) with equation (10), where 𝜆 is near unity for these two runs.
This choice of 𝜆 is due to the near impermeability of the lotus leaves, which form a vegetated cover on
the water surface. The vegetated cover is similar to ice cover in terms of roughness effect. With 𝜆 = 1,
equation (10) simplifies to the classical symmetric pipe flow case.

3.2. Shear Stress Profile
The shear stress profiles for the canopy flow case are also fitted seperately by following the similar proce-
dures as described in the prior velocity section, and shown in Figure 7. The total linear shear stress profiles
predicted from equations (12) and (14) are compared with the observed turbulent shear stress data reported
by Plew (2010). Figure 7 shows that the two-domain approach recovers the shear stresses in both layers.
However, it is to be noted that the shear stress profile in Figure 7 is not absolutely continual at the interface
between the canopy layer and the inner water layer, since the shear stress is fitted for the canopy layer and

Figure 7. Comparison between measured and modeled shear stress profiles for the suspended canopy flow assuming
𝜆 = 1. The shear stress scale 𝜌⟨u′ w′ ⟩ is in kg·m−1·s−2.
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Figure 8. Comparison between measured and modeled bulk velocity. The dashed line is the one-to-one agreement and
the velocity scale (U) is in m/s.

the inner water layer seperately (this is a flaw of the asymmetric method as stated by Guo et al., 2017) to
optimize the calculation efficiency. The shear stress in the canopy layer decreases rapidly in the subrange
(z ∈ (h + 𝛿,H)). This finding suggests that turbulent mixing is confined to (h, h + 𝛿) inside the vegetation,
which agrees with other canopy flow experiments (Ghisalberti & Nepf, 2004; Nepf & Vivoni, 2000). In the
inner layer beneath the canopy, the shear stress linearly varies with z as expected. In the cases studied here,
the top shear stress is much larger than the channel bed shear stress.

3.3. Bulk Velocity
Finally, the predicted bulk (or depth-averaged) velocity is compared with measurements. Figure 8 compares
predicted bulk velocity derived by integrating equations (10) and (22) from z = 0 to z = H with measured
ones from Plew (2010). Figure 8 shows that the predicted bulk velocity values match the measurements
reasonably.

4. Discussion and Model Limitation
One of the key simplifying assumptions used here is approximating the flow within the vegetated layer
of FTWs as a porous medium described by the Brinkman equation (Brinkman, 1949). This assumption is
plausible given that the Brinkman equation to which the model essentially reduces to is valid for highly per-
meable porous media (Auriault, 2009). As shown in prior studies (Ling et al., 2018), the Brinkman equation
can be used when the porous media is of high porosity. The associated porous resistivity coefficient 𝜙 packs
all the morphological geometry of the vegetation patches. This representation does not require separate
treatment of each individual canopy stem and is operational when considering distributions of particle
retention times in FTWs (Clark, 2011; Khan et al., 2013). In reality, suspended canopies exist in many forms
including cages, rafts, and some kelp, and their morphology can deviate appreciably from a dense porous
medium where Biot's or Brinkman's equation applies. Furthermore, the influence of surface wind under dif-
ferent meteorological conditions will contribute to the generation of surface waves and surface stresses not
considered here. Density stratification has been ignored and those effects can lead to porous-media convec-
tive transport as well. Perhaps most restrictive is the fact that the model focused on planar-homogeneous
and stationary flow conditions, which are likely to be violated in practice due to nonuniformity in vegeta-
tion growth, channel slope, channel roughness, transients in meteorological drivers, and nonsteadiness in
the inflow hydrograph to the FTW. Nonetheless, these idealized conditions must be first understood and
described before more complex situations are considered.

When adopting all the aforementioned assumptions, the mean velocity profile emerging from the proposed
model is not uniform and deviates from Darcy's equation or some modification to it. This deviation is not
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surprising as the roughness effect arising from the canopy bottom may be related to Kelvin-Helmholtz
instabilities (Finnigan, 2000; Nepf, 2012; Poggi et al., 2009; Raupach et al., 1996) or to large-scale eddies
penetrating the porous elements (Manes et al., 2012). When adopting this representation for the canopy, the
mean velocity profile inside the canopy layer is dependent on the vegetation density through a parameter 𝜙.
When 𝜙 is large, Biot's law converges to Darcy's law and conventional porous media equations for laminar
flow are recovered. However, if 𝜙 is small, Biot's law yields large deviations from Darcy's law but is expected
to converge to Stokes equation due to the effective viscosity introduced by the turbulent part and employed
in Biot's law or the Brinkman equation (Brinkman, 1949). The inner or vegetation-free water layer exhibits
an asymmetric shear stress profile that remains linear with depth in the absence of any obstructions. Hence,
an integral representation can be used provided the effect of such stress asymmetry is accounted for in a
newly proposed eddy viscosity formulation. The proposed approach predicts the location of maximum local
velocity as a function of a shear stress index 𝜆 in the vegetation-free zone. This index is intrinsically a ratio
of two roughness effects due to the channel bed and the auxiliary canopy bed. Once these properties are
predetermined from data or other models, the solution to the inner layer can be completed. A “blue print”
of how 𝜆 may be inferred separately is briefly discussed.

The dimensionless shear stress index was defined as 𝜆2 = 𝜏v∕𝜏b and reflects the asymmetric effects of the two
boundary conditions on the stress profile. Because the physical mechanisms shaping 𝜏v resemble those of
flow over porous gravel beds, the section here explores the possibility of inferring 𝜆 from the properties of the
porous bed. The approach is guided by the phenomenological model of Manes et al. (2012) that considered
the turbulent shear stress over a permeable boundary as consisting of two parts: 𝜏 = 𝜏o + 𝜏a, where 𝜏o
is the commonly-mentioned shear stress formulated over small-roughness boundary (or solid boundary),
and 𝜏a is an additional shear stress emerging from the turbulent momentum exchange due to large-scale
turbulent eddies penetrating the porous medium. For the highly permeable case, the work of Manes et al.
(2012) has shown that 𝜏a ≫ 𝜏o. If the turbulent shear stress near the canopy bottom is approximated by the
shear stress due to large-scale roughness (Li et al., 2019) only, then 𝜏v = 𝜏a. The 𝜏a can be derived using the
published model of Manes et al. (2012). In this model, 𝜏a accounts for the Forchheimer corrections to Darcy's
law as well as the permeability of the medium. For the shear stress formulated over the channel bed, only
the small-size eddies are assumed to transport momentum and 𝜏b = 𝜏o. Hence, the dimensionless stress
index can be modeled as 𝜆 ≈ 𝜏a∕𝜏o. For 𝜏o, the phenomenological model of Gioia and Chakraborty (2006)
(hereinafter GC06) applicable to a solid wall can be employed. At high Reynolds number, GC06 describes
𝜏o = 𝜌𝜅tusU, where 𝜅t is a constant coefficient of order unity, U is the bulk mean velocity of the entire inner
layer and us is a characteristic turn-over velocity of an eddy of size s transporting momentum within the
roughness elements characterized by size r. Using the arguments in GC06 for rough boundary layer flows,

us ∼ U(r∕H)1∕3. (27)

A review of roughness-induced friction factor for open flows over vegetated channels and highly permeable
boundaries can be found elsewhere (Cheng, 2011; Manes et al., 2012) and are not repeated here. However,
the usage of GC06 and the phenomenological model of Manes et al. (2012) allow independent determination
of 𝜆 from the roughness properties of the bed and the porous media properties of the vegetation if they are
a priori known.

5. Summary and Conclusion
FTWs are an emerging phytoremediation technique introduced in recent years for stormwater treatment.
For these techniques to be integrated into water treatment design options, models for describing the hydro-
dynamics within FTWs are necessary (but not sufficient). Developing such models remains a formidable
challenge and motivated the proposed work here. A coupled two-domain model is proposed for a simplified
FTW. The proposed model is minimal and must be viewed as an embryonic step toward advancing flow and
transport in FTW. The initial focus is necessarily biased toward processes common to all FTWs: a vegetation
layer and a vegetation-free layer in a sloping channel.

The vegetation layer is modeled as a porous medium where Biot's (or Brinkman's) law is assumed to apply.
The momentum equation in the streamwise direction is then solved after amending the fluid viscosity with
a momentum dispersivity coefficient that is needed to bridge the bottom boundary condition of the vege-
tated zone to the aforementioned porous media equations. Turbulent mixing is intense inside the penetrated
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canopy region near this boundary; that is, z ∈ (h, h + 𝛿). Similar to prior work on flow over submerged
canopies (Battiato & Rubol, 2014; Papke & Battiato, 2013), the proposed model also provides a direct expres-
sion for the penetration depth from this aforementioned boundary. However, as a point of departure from
other prior semianalytical submerged vegetated flow models (Huthoff et al., 2007; Konings et al., 2012),
the work here does not require explicitly a drag coefficient and a leaf area density. These coefficients are
combined into one porous resistivity coefficient 𝜙, which can be predetermined from the vegetation config-
uration. The shear stress distribution within the inner layer (or vegetation-free zone) is highly asymmetric.
Drawing on analogies to similar asymmetric flow configurations, an augmented eddy viscosity is proposed
that accommodates such stress asymmetry. The parameter 𝜆 describing the stress asymmetry is needed and
shown to be related to the vegetation and channel properties with the aid of two recent phenomenological
models presented elsewhere (Gioia & Chakraborty, 2006; Manes et al., 2012). The proposed model repro-
duced all the complex patterns in the mean velocity and stress profiles published in laboratory studies when
the two constants 𝜙 and 𝜆 are used as fitting parameters. Field testing of this model is a topic that is best
kept for future effort.
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